Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Infect Control Hosp Epidemiol ; : 1-4, 2021 Dec 06.
Article in English | MEDLINE | ID: covidwho-2323989

ABSTRACT

To assess the burden of respiratory virus coinfections with severe acute respiratory coronavirus virus 2 (SARS-CoV-2), this study reviewed 4,818 specimens positive for SARS-CoV-2 and tested using respiratory virus multiplex testing. Coinfections with SARS-CoV-2 were uncommon (2.8%), with enterovirus or rhinovirus as the most prevalent target (88.1%). Respiratory virus coinfection with SARS-CoV-2 remains low 1 year into the coronavirus disease 2019 (COVID-19) pandemic.

2.
PLoS One ; 17(11): e0277881, 2022.
Article in English | MEDLINE | ID: covidwho-2140668

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the global COVID-19 pandemic. Limited studies have been performed on various types of disinfectants utilized to control the spread of this highly contagious virus. This study aimed to investigate the inactivation of SARS-CoV-2 using compressed sodium chloride (CSC) surface. A real-time reverse transcriptase quantitative PCR (RT-qPCR) assay was used to evaluate the effectiveness of CSC on the disintegration of viral RNA in a time dependent manner. The effects of CSC on viral infectivity were determined using a TCID50 assay of a surrogate virus, hCoV-229E, in MRC-5 cell culture. The results demonstrated that CSC achieved a 2 to 3- log10 reduction of viral genomic RNA for a laboratory strain of hCoV-229E, and clinical samples of hCoV-229E and hCoV-OC43. A 3 to 4-log10 reduction was observed for SARS-CoV-2 (RdRp and E gene) suggesting that a CSC surface could effectively disintegrate the SARS-CoV-2 RNA genome. CSC was observed to have a 6 log10 inactivation of infectious hCoV-229E using cell culture after 5 minutes of exposure compared to the control, indicating good disinfection efficacy of a CSC surface against virus.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Humans , SARS-CoV-2 , RNA, Viral/genetics , RNA, Viral/analysis , Sodium Chloride/pharmacology , Pandemics
3.
J Assoc Med Microbiol Infect Dis Can ; 5(2): 98-103, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-2109663

ABSTRACT

As the pandemic of coronavirus disease 2019 (COVID-19) continues to evolve globally and within our Canadian borders, hospitals will begin to see an increasing number of confirmed or suspected cases at their doors. Although many patients can be managed at home, a reasonable proportion will experience progression of disease requiring hospitalization and potentially mechanical ventilation and intensive care. Herein, we report the presentation of the first case of COVID-19 admitted to hospital in Alberta. While The patient's course was mild, this case highlights a number of key points-namely the importance of widespread testing in the community to help inform emergency services (ambulance) workers and receiving front-line health care staff. Other important points include in-hospital monitoring and pharmacologic treatment.


Avec l'évolution de la pandémie de maladie à coronavirus 2019 (COVID-19) dans le monde et à l'intérieur des frontières du Canada, les hôpitaux verront un nombre croissant de patients au diagnostic confirmé ou présumé. De nombreux cas bénins peuvent être traités à la maison, mais dans une proportion raisonnable de cas, la maladie exigera une hospitalisation et peut-être une ventilation mécanique et une admission aux soins intensifs. Les auteurs rendent compte de la présentation du premier cas de COVID-19 hospitalisé en Alberta. Même si la maladie était bénigne, plusieurs éléments fondamentaux en sont ressortis, notamment l'importance de tests généralisés dans la population pour renseigner les services d'urgence (ambulance) et les travailleurs de la santé de première ligne. Le monitorage à l'hôpital et le traitement pharmacologique font partie des autres éléments importants.

4.
Euro Surveill ; 27(38)2022 09.
Article in English | MEDLINE | ID: covidwho-2054865

ABSTRACT

Influenza virus circulation virtually ceased in Canada during the COVID-19 pandemic, re-emerging with the relaxation of restrictions in spring 2022. Using a test-negative design, the Canadian Sentinel Practitioner Surveillance Network reports 2021/22 vaccine effectiveness of 36% (95% CI: -38 to 71) against late-season illness due to influenza A(H3N2) clade 3C.2a1b.2a.2 viruses, considered antigenically distinct from the 3C.2a1b.2a.1 vaccine strain. Findings reinforce the World Health Organization's decision to update the 2022/23 northern hemisphere vaccine to a more representative A(H3N2) clade 3C.2a1b.2a.2 strain.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Canada/epidemiology , Humans , Influenza A Virus, H3N2 Subtype , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Vaccine Efficacy
5.
Emerg Infect Dis ; 28(9): 1770-1776, 2022 09.
Article in English | MEDLINE | ID: covidwho-1963355

ABSTRACT

Wastewater monitoring of SARS-CoV-2 enables early detection and monitoring of the COVID-19 disease burden in communities and can track specific variants of concern. We determined proportions of the Omicron and Delta variants across 30 municipalities covering >75% of the province of Alberta (population 4.5 million), Canada, during November 2021-January 2022. Larger cities Calgary and Edmonton exhibited more rapid emergence of Omicron than did smaller and more remote municipalities. Notable exceptions were Banff, a small international resort town, and Fort McMurray, a medium-sized northern community that has many workers who fly in and out regularly. The integrated wastewater signal revealed that the Omicron variant represented close to 100% of SARS-CoV-2 burden by late December, before the peak in newly diagnosed clinical cases throughout Alberta in mid-January. These findings demonstrate that wastewater monitoring offers early and reliable population-level results for establishing the extent and spread of SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Alberta/epidemiology , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , Wastewater
6.
Diagn Microbiol Infect Dis ; 102(4): 115618, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1936284

ABSTRACT

In the setting of supply chain shortages of nasopharyngeal (NP) swabs, we sought to compare the ability of nasopharyngeal, midturbinate nasal, and oropharyngeal swabs (NPS, MTS, and OPS) to detect SARS-CoV-2. Community and hospitalized participants post-COVID-19 diagnosis were swabbed and tested for SARS-CoV-2 by PCR. Thirty-six participants had all 3 swabs collected. Using detection at any site as the standard, the percent positive agreements were 90% (95% CI 74.4-96.5), 80% (70.3-94.7) and 87% (62.7-90.5) for NPS, MTS, and OPS, respectively. Subsequently, 43 participants had OPS and NPS collected. Thirty-nine were positive with a percent positive agreement of 82.1% (95% CI 67.3-91.0) for OPS and 87.2% (73.3-94.4) for NPS. Combining all 79 patients tested, 67 were positive at either site with a positive agreement was 86.5% (76.4-92.7) for OPS and 91.1% (81.8-95.8) for NPS. OPS are an acceptable alternative to NPS for the detection of SARS-CoV-2 infections.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Nasopharynx , Saliva , Specimen Handling
7.
Infect Dis (Lond) ; 54(9): 666-676, 2022 09.
Article in English | MEDLINE | ID: covidwho-1868223

ABSTRACT

BACKGROUND: The COVID-19 pandemic has necessitated the need to rapidly make public health decisions. We systematically evaluated SARS-CoV-2 seropositivity to understand local COVID-19 epidemiology and support evidence-based public health decision making. METHODS: Residual blood samples were collected for SARS-CoV-2 receptor binding domain (RBD) IgG testing over a 1-5 day period monthly from 26 February 2021-9 July 2021 from six clinical laboratories across the province of Alberta, Canada. Monthly crude and adjusted (for age and gender) seropositivity were calculated. Results were linked to provincial administrative, laboratory, and vaccine databases. RESULTS: 60,632 individual blood samples were tested. Vaccination data were available for 98.8% of samples. Adjusted RBD IgG positivity rose from 11.9% (95% confidence interval [CI] 11.9-12.0%) in March 2021 to 70.2% (95% CI 70.2-70.3%) in July 2021 (p < .0001). Seropositivity rose from 9.4% (95% CI 9.3-9.4%) in March 2021 to 20.2% (95% CI 20.1-20.2%) in July 2021 in unvaccinated Albertans. Unvaccinated seropositive individuals were from geographic areas with significantly (p < .001) lower median household income, lower proportion of married/common-law relationships, larger average household size and higher proportions of visible minorities compared to seronegative unvaccinated individuals. In July 2021, the age groups with the lowest and highest seropositivity in unvaccinated Albertans were those ≥80 years (12.0%, 95% CI 5.3-18.6%) and 20-29 years (24.2%, 95% CI 19.6-28.8%), respectively. Of seropositive unvaccinated individuals, 50.2% (95% CI 45.9-54.5%) had no record of prior SARS-CoV-2 molecular testing. CONCLUSIONS: Longitudinal surveillance of SARS-CoV-2 seropositivity with data linkage is valuable for decision-making during the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged, 80 and over , Alberta/epidemiology , Antibodies, Viral , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Immunoglobulin G , Pandemics , Vaccination
8.
J Virol Methods ; 307: 114553, 2022 09.
Article in English | MEDLINE | ID: covidwho-1867443

ABSTRACT

In order to detect the SARS-CoV-2 variants of concern (VOCs), five real-time reverse transcriptase PCR (rRT-PCR) assays were designed to target the critical discriminatory mutations responsible for the following amino acid changes in the spike protein: two Δ69-70 + N501Y + E gene triplexes (one optimized for Alpha [B.1.1.7] and one optimized for Omicron [B.1.1.529]), a K417N + 242-244 wild-type duplex, a K417T + E484K duplex, and a L452R + P681 + E484Q triplex. Depending on the assay, sensitivity was 98.97-100% for the detection of known VOC-positive samples, specificity was 97.2-100%, limit of detection was 2-116 copies/reaction, intra- and interassay variability was less than 5%, and no cross-reactivity with common respiratory pathogens was observed with any assay. A subset of rRT-PCR- positive VOC samples were further characterized by genome sequencing. A comparison of the lineage designation by the VOC rRT-PCR assays and genome sequencing for the detection of the Alpha, Beta, Gamma, Delta and Omicron variants showed clinical sensitivities of 99.97-100 %, clinical specificities of 99.6-100 %, positive predictive values of 99.8-100%, and negative predictive values of 99.98-100 %. We have implemented these rRT-PCR assays targeting discriminatory single nucleotide polymorphisms for ongoing VOC screening of SARS-CoV-2 positive samples for surveillance purposes. This has proven extremely useful in providing close to real-time molecular surveillance to monitor the emergence of Alpha, the replacement of Alpha by Delta, and the replacement of Delta by Omicron. While the design, validation and implementation of the variant specific PCR targets is an ever-evolving approach, we find the turn-around-time, high throughput and sensitivity to be a useful complementary approach for SARS-CoV-2 genome sequencing for surveillance purposes in the province of Alberta, Canada.


Subject(s)
COVID-19 , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
9.
BMJ Open ; 11(8), 2021.
Article in English | ProQuest Central | ID: covidwho-1842919

ABSTRACT

IntroductionThe COVID-19 pandemic has an excessive impact on residents in long-term care facilities (LTCF), causing high morbidity and mortality. Early detection of presymptomatic and asymptomatic COVID-19 cases supports the timely implementation of effective outbreak control measures but repetitive screening of residents and staff incurs costs and discomfort. Administration of vaccines is key to controlling the pandemic but the robustness and longevity of the antibody response, correlation of neutralising antibodies with commercial antibody assays, and the efficacy of current vaccines for emerging COVID-19 variants require further study. We propose to monitor SARS-CoV-2 in site-specific sewage as an early warning system for COVID-19 in LTCF and to study the immune response of the staff and residents in LTCF to COVID-19 vaccines.Methods and analysisThe study includes two parts: (1) detection and quantification of SARS-CoV-2 in LTCF site-specific sewage samples using a molecular assay followed by notification of Public Health within 24 hours as an early warning system for appropriate outbreak investigation and control measures and cost–benefit analyses of the system and (2) testing for SARS-CoV-2 antibodies among staff and residents in LTCF at various time points before and after COVID-19 vaccination using commercial assays and neutralising antibody testing performed at a reference laboratory.Ethics and disseminationEthics approval was obtained from the University of Alberta Health Research Ethics Board with considerations to minimise risk and discomforts for the participants. Early recognition of a COVID-19 case in an LTCF might prevent further transmission in residents and staff. There was no direct benefit identified to the participants of the immunity study. Anticipated dissemination of information includes a summary report to the immunity study participants, sharing of study data with the scientific community through the Canadian COVID-19 Immunity Task Force, and prompt dissemination of study results in meeting s and manuscripts in peer-reviewed journals.

10.
J Virol Methods ; 301: 114468, 2022 03.
Article in English | MEDLINE | ID: covidwho-1633818

ABSTRACT

The processing of swabs for respiratory virus detection involves vortexing while still in the viral transport medium (VTM). The effect of not vortexing swabs prior to analysis has not been studied extensively for SARS-CoV-2 detection, and presents an opportunity to improve pre-analytic laboratory workflow. We aimed to assess the impact of not vortexing nasopharyngeal/throat swabs submitted in VTM for SARS-CoV-2 testing. To assess the impact of not vortexing swabs, 277 swab samples were tested for SARS-CoV-2 RNA in paired vortexed and non-vortexed aliquots using eight routine nucleic acid amplification assays. We compared the qualitative (positive/negative) and semi-quantitative (cycle threshold, Ct) results. Following discordant analysis, all but one non-vortexed sample had the same qualitative result as the vortexed sample. 27.4 % of samples were SARS-CoV-2 positive. Comparison of Ct values revealed an apparent reduction in human cellular nucleic acid in the non-vortexed samples (mean Ct values of 24.0 and 26.5 for vortexed and non-vortexed samples, respectively, p < 0.0001) and increased Ct values for non-vortexed samples using a laboratory-developed SARS-CoV-2 assay (mean Ct values of 4.1 and 4.2 for vortexed and non-vortexed samples, respectively; p < 0.0001), but this was not observed for a more automated commercial SARS-CoV-2 assay (mean Ct values of 15.2 for both vortexed and non-vortexed samples, respectively; p = 0.68). While vortexing swabs appears to improve the recovery of cellular material, it does not have an appreciable impact on the qualitative sensitivity of SARS-CoV-2 nucleic acid tests, which may support omission of this step and simplification of front-end sample processing.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , Nasopharynx , Pharynx , Pilot Projects , RNA, Viral/genetics , Specimen Handling/methods
13.
Mayo Clin Proc ; 96(12): 3042-3052, 2021 12.
Article in English | MEDLINE | ID: covidwho-1415645

ABSTRACT

OBJECTIVE: To determine the incidence of influenza and noninfluenza respiratory viruses (NIRVs) pre-/post-implementation of public health measures aimed to decrease coronavirus disease 2019 (COVID-19) transmission using population-based surveillance data. We hypothesized that such measures could reduce the burden of respiratory viruses (RVs) transmitting via the same routes. PATIENTS AND METHODS: An interrupted time-series analysis of RV surveillance data in Alberta, Canada, from May 2017 to July 2020 was conducted. The burden of influenza and NIRVs before and after intervention initiation at week 11 was compared. The analysis was adjusted for seasonality, overdispersion, and autocorrelation. RESULTS: During the study period, an average of 708 and 4056 weekly respiratory multiplex molecular panels were conducted pre-/post-intervention, respectively. We found significant reductions in test positivity rates in the postintervention period for influenza (-94.3%; 95% CI, -93.8 to 97.4%; P<.001) and all NIRVs (-76.5%; 95% CI, -77.3 to -75.8%; P<.001) in the crude model, and -86.2% (95% CI, -91.5 to -77.4%: P<.001) and -75% (95% CI, -79.7 to -69.3%; P<.001), respectively, in the adjusted models. Subanalyses for individual viruses showed significant decreases in respiratory syncytial virus, human metapneumovirus, enterovirus/rhinovirus, and parainfluenza. For non-severe acute respiratory coronavirus 2 human coronaviruses, the decline was not statistically significant after adjustment (-22.3%; 95% CI, -49.3 to +19%, P=.246). CONCLUSION: The implementation of COVID-19 public health measures likely resulted in reduced transmission of common RVs. Although drastic lockdowns are unlikely to be required given widespread COVID-19 vaccination, targeted implementation of such measures can lower RV disease burden. Studies to evaluate relative contributions of individual interventions are warranted.


Subject(s)
COVID-19 , Communicable Disease Control , Disease Transmission, Infectious/prevention & control , Respiratory Tract Infections , Virus Diseases , Viruses , Adolescent , Adult , Aged , Alberta/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Communicable Disease Control/statistics & numerical data , Epidemiological Monitoring , Humans , Incidence , Infant, Newborn , Influenza, Human/epidemiology , Interrupted Time Series Analysis/statistics & numerical data , Public Health/methods , Public Health/statistics & numerical data , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , SARS-CoV-2 , Seasons , Virus Diseases/classification , Virus Diseases/epidemiology , Virus Diseases/prevention & control , Viruses/classification , Viruses/isolation & purification
14.
JAMA Netw Open ; 4(9): e2124650, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1412566

ABSTRACT

Importance: Every year, respiratory viruses exact a heavy burden on Canadian hospitals during winter months. Generalizable seasonal patterns of respiratory virus transmission may estimate the evolution of SARS-CoV-2 or other emerging pathogens. Objective: To describe the annual and biennial variation in respiratory virus seasonality in a northern climate. Design, Setting, and Participants: This cohort study is an epidemiological assessment using population-based surveillance of patients with medically attended respiratory tract infection from 2005 through 2017 in Alberta, Canada. Incident cases of respiratory virus infection and infant respiratory syncytial virus (RSV) hospitalizations in Alberta were extracted from the Data Integration for Alberta Laboratories platform and Alberta Health Services Discharge Abstract Database, respectively. A deterministic susceptible-infected-recovered-susceptible mathematical model with seasonal forcing function was fitted to the data for each virus. The possible future seasonal course of SARS-CoV-2 in northern latitudes was modeled on the basis of these observations. The analysis was conducted between December 15, 2020, and February 10, 2021. Exposures: Seasonal respiratory pathogens. Main Outcomes and Measures: Incidence (temporal pattern) of respiratory virus infections and RSV hospitalizations. Results: A total of 37 719 incident infections with RSV, human metapneumovirus, or human coronaviruses 229E, NL63, OC43, or HKU1 among 35 375 patients (18 069 [51.1%] male; median [interquartile range], 1.29 [0.42-12.2] years) were documented. A susceptible-infected-recovered-susceptible model mirrored the epidemiological data, including a striking biennial variation with alternating severe and mild winter peaks. Qualitative description of the model and numerical simulations showed that strong seasonal contact rate and temporary immunity lasting 6 to 12 months were sufficient to explain biennial seasonality in these various respiratory viruses. The seasonality of 10 212 hospitalizations among children younger than 5 years with RSV was also explored. The median (interquartile range) rate of hospitalizations per 1000 live births was 18.6 (17.6-19.9) and 11.0 (10.4-11.7) in alternating even (severe) and odd (less-severe) seasons, respectively (P = .001). The hazard of admission was higher for children born in severe (even) seasons compared with those born in less-severe (odd) seasons (hazard ratio, 1.68; 95% CI, 1.61-1.75; P < .001). Conclusions and Relevance: In this modeling study of respiratory viruses in Alberta, Canada, the seasonality followed a pattern estimated by simple mathematical models, which may be informative for anticipating future waves of pandemic SARS-CoV-2.


Subject(s)
Respiratory Tract Infections/virology , Seasons , Virus Diseases/diagnosis , Alberta/epidemiology , Cohort Studies , Hospitalization/statistics & numerical data , Humans , Incidence , Respiratory Tract Infections/epidemiology , Statistics, Nonparametric , Virus Diseases/epidemiology
15.
Microbiol Spectr ; 9(1): e0029121, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1361970

ABSTRACT

We systematically evaluated SARS-CoV-2 IgG positivity in a provincial cohort to understand the local epidemiology of COVID-19 and support evidence-based public health decisions. Residual blood samples were collected for serology testing over 5-day periods monthly from June 2020 to January 2021 from six clinical laboratories across the province of Alberta, Canada. A total of 93,993 individual patient samples were tested with a SARS-CoV-2 nucleocapsid antibody assay with positives confirmed using a spike antibody assay. Population-adjusted SARS-CoV-2 IgG seropositivity was 0.92% (95% confidence interval [CI]: 0.91 to 0.93%) shortly after the first COVID-19 wave in June 2020, increasing to 4.63% (95% CI: 4.61 to 4.65%) amid the second wave in January 2021. There was no significant difference in seropositivity between males and females (1.39% versus 1.27%; P = 0.11). Ages with highest seropositivity were 0 to 9 years (2.71%, 95% CI: 1.64 to 3.78%) followed by 20 to 29 years (1.58%, 95% CI: 1.12 to 2.04%), with the lowest rates seen in those aged 70 to 79 (0.79%, 95% CI: 0.65 to 0.93%) and >80 (0.78%, 95% CI: 0.60 to 0.97%). Compared to the seronegative group, seropositive patients inhabited geographic areas with lower household income ($87,500 versus $97,500; P < 0.001), larger household sizes, and higher proportions of people with education levels of secondary school or lower, as well as immigrants and visible minority groups (all P < 0.05). A total of 53.7% of seropositive individuals were potentially undetected cases with no prior positive COVID-19 nucleic acid test (NAAT). Antibodies were detectable in some patients up to 9 months post positive NAAT result. This seroprevalence study will continue to inform public health decisions by identifying at-risk demographics and geographical areas. IMPORTANCE Using SARS-CoV-2 serology testing, we assessed the proportion of people in Alberta, Canada (population 4.4 million) positive for COVID-19 antibodies, indicating previous infection, during the first two waves of the COVID-19 pandemic (prior to vaccination programs). Linking these results with sociodemographic population data provides valuable information as to which groups of the population are more likely to have been infected with the SARS-CoV-2 virus to help facilitate public health decision-making and interventions. We also compared seropositivity data with previous COVID-19 molecular testing results. Absence of antibody and molecular testing were highly correlated (95% negative concordance). Positive antibody correlation with a previous positive molecular test was low, suggesting the possibility of mild/asymptomatic infection or other reasons leading individuals from seeking medical attention. Our data highlight that the true estimate of population prevalence of COVID-19 is likely best informed by combining data from both serology and molecular testing.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/epidemiology , COVID-19/immunology , Pandemics , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Alberta , Asymptomatic Infections/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , Female , Humans , Immunoglobulin G/blood , Infant , Infant, Newborn , Male , Middle Aged , Molecular Diagnostic Techniques , Prevalence , Seroepidemiologic Studies , Social Class , Young Adult
16.
Microbiol Spectr ; 9(1): e0031521, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1352540

ABSTRACT

SARS-CoV-2 variants of concern (VOCs) have emerged as a global threat to the COVID-19 pandemic response. We implemented a combined approach to quickly detect known VOCs while continuously monitoring for evolving mutations of the virus. To rapidly detect VOCs, two real-time reverse transcriptase PCR assays were designed and implemented, targeting the spike gene H69/V70 deletion and the N501Y mutation. The H69/V70 deletion and N501Y mutation assays demonstrated accuracies of 98.3% (95% CI 93.8 to 99.8) and 100% (95% CI 96.8 to 100), limits of detection of 1,089 and 294 copies/ml, and percent coefficients of variation of 0.08 to 1.16% and 0 to 2.72% for the two gene targets, respectively. No cross-reactivity with common respiratory pathogens was observed with either assay. Implementation of these tests allowed the swift escalation in testing for VOCs from 2.2% to ∼100% of all SARS-CoV-2-positive samples over 12 January to 9 February 2021, and resulted in the detection of a rapid rise of B.1.1.7 cases within the province of Alberta, Canada. A prospective comparison of the VOC assays to genome sequencing for the detection of B.1.1.7, combined detection of P.1 and B.1.351, and wild-type (i.e., non-VOC) lineages showed sensitivities of 98.2 to 100%, specificities of 98.9 to 100%, positive predictive values of 76.9% to 100%, and negative predictive values of 96 to 100%. Variant screening results inform sampling strategies for regular surveillance by genome sequencing, thus allowing rapid identification of known VOCs while continuously monitoring the evolution of SARS-CoV-2 in the province. IMPORTANCE Different strains, or variants, of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, the virus that causes COVID-19) have emerged that have higher levels of transmission, less susceptibility to our immune response, and possibly cause more severe disease than previous strains of the virus. Rapid detection of these variants of concern is important to help contain them and prevent them from spreading widely within the population. This study describes two newly developed tests that are able to identify and differentiate the variants of concern from regular strains of SARS-CoV-2. These tests are faster and simpler than the main, gold standard method of identifying variants of concern (genome sequencing). These tests also demonstrated a high correlation with genome sequencing and allowed for the rapid and accurate detection of the rise of B.1.1.7 (one of the variants of concern) in the province of Alberta, Canada.


Subject(s)
COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Base Sequence , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Canada , Humans , Mutation , Pandemics , Polymerase Chain Reaction , Prospective Studies
17.
J Assoc Med Microbiol Infect Dis Can ; 6(1): 10-15, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1234646

ABSTRACT

Background: The first case of coronavirus disease 2019 (COVID-19) in Alberta, Canada, was confirmed on March 5, 2020. Because the virus testing criteria had changed significantly over this time period, we wanted to ascertain whether previous cases of COVID-19 had been missed in the province. Methods: Our aim was to retrospectively evaluate specimens submitted for respiratory virus testing from December 1, 2019, through March 7, 2020, for undetected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections before the first confirmed case. Results: Testing of 23,517 samples (representing 23,394 patients) identified 1 patient positive for SARS-CoV-2. This specimen was collected on February 24, 2020, from a patient with symptoms consistent with COVID-19 who had recently returned from the western United States. Phylogenetic analysis confirmed this viral isolate belonged to lineage B.1. The epidemiology of this case is consistent with those of other early cases before sustained community transmission, which included a travel history outside of Canada. Conclusion: This exercise provides support that local public health pandemic planning was satisfactory and timely.


Historique: Le premier cas de maladie à coronavirus 2019 (COVID-19) en Alberta, au Canada, a été confirmé le 15 mars 2020. Puisque les critères de dépistage ont beaucoup évolué pendant cette période, les chercheurs voulaient vérifier si des cas antérieurs de COVID-19 avaient été omis dans la province. Méthodologie: Les chercheurs ont procédé à l'évaluation rétrospective d'échantillons soumis en vue du dépistage d'un virus respiratoire entre le 1er décembre 2019 et le 7 mars 2020, afin de retracer les infections par le coronavirus 2 du syndrome respiratoire aigu sévère (SARS-CoV-2) non décelées avant le premier cas confirmé. Résultats: Le dépistage de 23 517 échantillons (représentant 23 394 patients) a fait ressortir un patient positif au SARS-CoV-2. Le prélèvement avait été effectué le 24 février 2020 chez un patient éprouvant des symptômes correspondant à la COVID-19 revenu récemment de l'ouest des États-Unis. L'analyse phylogénétique a confirmé que l'isolat viral appartenait à la lignée B.1. L'épidémiologie de ce cas est compatible avec celle des autres premiers cas précédant une transmission communautaire soutenue, qui incluait un voyage à l'extérieur du Canada. Conclusion: Cet exercice appuie la pertinence et la rapidité de la planification sanitaire locale de la pandémie.

18.
J Assoc Med Microbiol Infect Dis Can ; 6(1): 16-22, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1234644

ABSTRACT

Background: The recent emergence and rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrates the urgent need for laboratory-developed assays for clinical diagnosis and public health interventions in the absence of commercial assays. Methods: We outline the progression of reverse-transcriptase polymerase chain reaction (RT-PCR) assays that were developed and validated at the Alberta Precision Laboratories, Public Health Laboratory, Alberta, Canada, to respond to this pandemic. Initially, testing was performed using SARS-CoV-2-specific and pan-coronavirus gel-based assays that were soon superseded by real-time RT-PCR assays targeting the envelope and RNA-dependent RNA polymerase genes to accommodate the high anticipated volumes of samples. Throughput was further enhanced by multiplexing the different targets together with the co-detection of an internal extraction control. Results: These assays are comparable in sensitivity and specificity to the assays recommended by the World Health Organization and the US Centers for Disease Control and Prevention. Conclusions: The availability of real-time RT-PCR assays early in the pandemic was essential to provide valuable time to local health authorities to contain transmission and prepare for appropriate response strategies.


Historique: La récente émergence et la propagation mondiale rapide du coronavirus 2 du syndrome respiratoire aigu sévère (SARS-CoV-2) a démontré l'urgence de créer des dosages en laboratoire pour poser un diagnostic clinique et adopter des interventions sanitaires en l'absence de dosages commerciaux. Méthodologie: Les chercheurs exposent la progression des dosages d'amplification en chaîne par polymérase couplée à la transcriptase inverse (RT-PCR) mis au point et validés par les Alberta Precision Laboratories du Laboratoire de santé publique de l'Alberta, au Canada, pour répondre à cette pandémie. Les tests ont d'abord été effectués au moyen de dosages sur gel spécifiques au SARS-CoV-2 ou décelant tous les coronavirus, mais ont vite été remplacés par des dosages RT-PCR en temps réel ciblant l'enveloppe et les gènes d'ARN polymérase sous la dépendance d'ARN pour répondre au fort volume anticipé d'échantillons. Le criblage a également été renforcé par le multiplexage conjoint des différentes cibles et la codétection d'un contrôle d'extraction interne. Résultats: Ces dosages ont une sensibilité et une spécificité comparables à ceux recommandés par l'Organisation mondiale de la Santé et les Centers for Disease Control and Prevention des États-Unis. Conclusions: Il était essentiel de disposer de dosages RT-PCR au début de la pandémie pour que les autorités sanitaires locales puissent profiter de temps précieux pour contenir la transmission et préparer les stratégies de réponse appropriées.

19.
Virol J ; 18(1): 93, 2021 05 01.
Article in English | MEDLINE | ID: covidwho-1208555

ABSTRACT

BACKGROUND: SARS-CoV-2 infection can present with a broad clinical differential that includes many other respiratory viruses; therefore, accurate tests are crucial to distinguish true COVID-19 cases from pathogens that do not require urgent public health interventions. Co-circulation of other respiratory viruses is largely unknown during the COVID-19 pandemic but would inform strategies to rapidly and accurately test patients with respiratory symptoms. METHODS: This study retrospectively examined 298,415 respiratory specimens collected from symptomatic patients for SARS-CoV-2 testing in the three months since COVID-19 was initially documented in the province of Alberta, Canada (March-May, 2020). By focusing on 52,285 specimens that were also tested with the Luminex Respiratory Pathogen Panel for 17 other pathogens, this study examines the prevalence of 18 potentially co-circulating pathogens and their relative rates in prior years versus since COVID-19 emerged, including four endemic coronaviruses. RESULTS: SARS-CoV-2 was identified in 2.2% of all specimens. Parallel broad multiplex testing detected additional pathogens in only 3.4% of these SARS-CoV-2-positive specimens: significantly less than in SARS-CoV-2-negative specimens (p < 0.0001), suggesting very low rates of SARS-CoV-2 co-infection. Furthermore, the overall co-infection rate was significantly lower among specimens with SARS-CoV-2 detected (p < 0.0001). Finally, less than 0.005% of all specimens tested positive for both SARS-CoV-2 and any of the four endemic coronaviruses tested, strongly suggesting neither co-infection nor cross-reactivity between these coronaviruses. CONCLUSIONS: Broad respiratory pathogen testing rarely detected additional pathogens in SARS-CoV-2-positive specimens. While helpful to understand co-circulation of respiratory viruses causing similar symptoms as COVID-19, ultimately these broad tests were resource-intensive and inflexible in a time when clinical laboratories face unprecedented demand for respiratory virus testing, with further increases expected during influenza season. A transition from broad, multiplex tests toward streamlined diagnostic algorithms targeting respiratory pathogens of public health concern could simultaneously reduce the overall burden on clinical laboratories while prioritizing testing of pathogens of public health importance. This is particularly valuable with ongoing strains on testing resources, exacerbated during influenza seasons.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Coinfection/epidemiology , SARS-CoV-2/isolation & purification , Alberta/epidemiology , Canada/epidemiology , Coronavirus/isolation & purification , Coronavirus 229E, Human/isolation & purification , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/isolation & purification , Cross Reactions , Female , Humans , Male , Orthomyxoviridae/isolation & purification , Pandemics , Prevalence , Retrospective Studies
20.
J Virol Methods ; 293: 114151, 2021 07.
Article in English | MEDLINE | ID: covidwho-1174407

ABSTRACT

In the current pandemic of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the co-circulation of SARS-CoV-2 and other respiratory viruses during the upcoming fall and winter seasons may present an unprecedented burden of respiratory disease in the population. Important respiratory viruses that will need to be closely monitored during this time include SARS-CoV-2, influenza A and influenza B. The epidemiology of these viruses is very similar in terms of susceptible populations, mode of transmission, and the clinical syndromes, thus the etiological agent will be difficult to differentiate without target specific assays. The availability of a sensitive and specific multiplex assay that can simultaneously detect all these targets will be valuable. Here we report the validation of a real-time reverse transciptase-PCR assay for the simultaneous detection of SARS-CoV-2, influenza A and influenza B. This multiplex assay is comparable to its singleplex counterparts with a limit-of-detection being less than 5 copies/reaction, 100 % specificity, over seven logs of dynamic range, less than 1 % coefficientof variation showing high precision, and equivalent accuracy using patient samples. It also offers the added benefits of savings in reagents and technologist time while improving testing efficiency and turn-around-times in order to respond effectively to the ongoing pandemic.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/diagnosis , Multiplex Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Coinfection/diagnosis , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL